On the Geometry of Prequantization Spaces

نویسندگان

  • MARCO ZAMBON
  • CHENCHANG ZHU
چکیده

Given a Poisson (or more generally Dirac) manifold P , there are two approaches to its geometric quantization: one involves a circle bundle Q over P endowed with a Jacobi (or Jacobi-Dirac) structure; the other one involves a circle bundle with a (pre-) contact groupoid structure over the (pre-) symplectic groupoid of P . We study the relation between these two prequantization spaces. We show that the circle bundle over the (pre-) symplectic groupoid of P is obtained from the groupoid of Q via an S reduction that preserves both the groupoid and the geometric structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

Prequantization and Lie Brackets

We start by describing the relationship between the classical prequantization condition and the integrability of a certain Lie algebroid associated to the problem and use this to give a global construction of the prequantizing bundle in terms of path spaces (Introduction), then we rephrase the problem in terms of groupoids (second section), and then we study the more general problem of prequant...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

Metaplectic-c Quantomorphisms

In the classical Kostant–Souriau prequantization procedure, the Poisson algebra of a symplectic manifold (M,ω) is realized as the space of infinitesimal quantomorphisms of the prequantization circle bundle. Robinson and Rawnsley developed an alternative to the Kostant–Souriau quantization process in which the prequantization circle bundle and metaplectic structure for (M,ω) are replaced by a me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005